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Abstract: The problem is to calculate an approximate solution of an initial value
problem for a scalar autonomous differential equation. A generalized notion of a
nonlinear Runge-Kutta (NRK) method is defined. We show that the order of any
s-stage NRK method cannot exceed 2s - 1; hence, the family of NRK methods due to
Brent has the maximal order possible. Using this result , we derive complexity bounds
on the problem of finding an approximate solution with error not exceeding e. We also
compute the order which minimizes these bounds, and show that this optimal order
increases as a decreases, tending to infinity as i tends to zero.
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1. Introduction

L.t ~
) be a subset of the real numbers I~, and let ‘~~ — (v : domaln(v) C R -, 11)

be a set of functions, such that the initial value oroblem of finding a function

x : (0, 1).. R satisfying

~(t) — v(x(t)) 0 < t’  1
(1.1)

x(0) — x0

has a unique solution for every (x0 , v) ( ~ x’G. (The diff.rentisl equation In (1.1) is

said to be a ~af~ autonomous differential equation.) We are Interested In the

computational complexity of using one-steD methods to generate an approximation to

(1.1) on an equidistant g~j~ (in the sense of Stetter (73]h that Is, the methods

considered give approximations x1 to x(ih) by the recurrence

(1.2) x141 — x~ + h p(x,,h) (0 S i S fl - 1),

where h — n~ is the step-size of a grid with n points, and y is the increment tuflCtiofl

(Henricl (62]) for the method. (For brevity, we will refer to “the method p.”)

In Werschulz [76a), we discussed the complexity of solving autonomous systems

of differential equations; in this paper, we will consider only the case of a single isJJIL

autonomous equation. Clearly, the results of Werschulz [76a] hold for problems of the

V form (1.1). However, in this paper we will discuss the complexity of solvIng (1.1) vii

nonlinear Run~e-Kutta methods (abbreviated, “NRI( methods”). We only consider the

scaler case (1.1), since it is not known whether NRK methods •x ist for more general

syst ems.

In Section 2, we give the formal definition of “NRK method,” and show that no

NRK method using s evaluations of v (“stages”) can have ordrr exceeding 2s - L. Thus,

~~
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ft~e set of s-stage methods of order 2s - I described in Brent (74] has maximal order

in the class of NRK methods.

In Section 3, we use the results of Brent (743 and Section 2 to find upper and

lower bounds on the complexity of finding an approximate solution whose error does

not exceed a, using a method of fixed order. These results are then used to calculate

optimal orders which minimize these complexity bounds. We show that the optima l

order increases as a decreases, tending to infinity as a tends to zero. Finally, we

compare the com plexities of NR$( methods, Taylor series methods, and linear Rung.-

Kutta methods. We show that the best NRK methods known are asymptotically better

(as • tends to zero) than the best linear Runge-Kutta methods possible, but are

• asymptoticall y wors e than the best Taylor series methods known If the cost of

evaluating the kth derivative of v is bounded for all k.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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• 
• 2. Maximal Order for NRK Methods

Before proceeding any further, we will review some basic notions from

Werschulz (76b]. The following notational conventions will be used. Let Z be an

ordered ring; then “E~” and “E94” respectively denote the nonnegative and positive

elements of 2C. (This is used in the cases E — P the real numbers, and I — 1, the

integers.) The symbol “:—“ means “is defined to be.” We use “I” to denote the unit

interval (0, 1). The notations “x J a” and “x t a” are used to indicate one-sided limits,

- J as in Buck (65]. Finally, if 
~ x~ : P -. P and ~.: P2 -. P are differentiable, then

for I — 1, 2, we write

~ ~a(~ 1(t), ~2(t))

for th. result of differentiating ga(
~1, x2) with respect to 

~
,, - and then substituting

xi — ~1(t), X2 —

• We next describe the model of computation to be used. We assume only that all

arithmetic operations are performed exactly in P (i.e., infinite-precision arithmetic) and

that for all v ‘t~, we are able to compute the value of v at any point in its domain. In

addition, we must pick an error measure, so that we may measure the discrepancy

between the approximate solution produced by ~ (via (1.2)) and the true solution. For

the sake of definlt•ness, we use the siobal ~~
(2.1) VG(p,h) :— max 0Si~n Ix(ih) - x~

Oth.r error measures may be used, such as the ~çjj error oar ~~~ and the 19c11
error ~~ ~~~ (see Henrici [62] and Stetter [73) for definitions) this would

involve onty a slight modification of the results contained in the sequel.

Finally, we will say that $ — (p~ 
: p 1 ‘‘ J is a b.~~c. seouence of methods if

thers exist functions a :  P4xI s P and ‘L , KU: P4 ~ ~~ such that 

• - - • —- -~~ •--•-- • ,-- 
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(2.2) sQ(~~,h) — i(p,h) h~ for h E I and p E ~~~ •

where

(2.3) 0 < 
~~~ 

s a(p,h) S .t~j(p) < +oo f o r h f l  .

We say that has order p. This is a slight extension of the definition of order given

in Cooper and Verner (72~ the function ‘L introduced here is necessary and sufficient

for the “order’ of a method to be unique. (Here we introduce the conv.ntion of

attaching the subscripts “1” and “U” to quantities dealing with lower and upper bounds

(respectively) on complexity.)

We now consider a generalization of the familiar linear Runge-Kutta methods

which are found in s~andard texts such as Henrici (62]. A basic sequence $ is said to

• 
be a sequence of ~~~~~~ ~~npe-Kutta methods (“NRK methods”) if each Increment

function ~p ~~ m~y be written in the form

(2.4) ~~(x~,h) :— ,5(x0,h; K0, ... ,K~~_ 1)

H where

(2.5) lij :— v(y1), Yj :— r~(x1,h; K0, ... ,k1 1 ) (0 s i ~ s — 1)

for suitable functions : pxPxPJ .. P (0 � j � s). We say that has s s(p)

stages, so that an s-stage NRK method uses s evaluations of v. Since the one-step

method defined by (2.4) and (2.5) is stationary (i.e., does not change from step to

step), we need only describe how x1 is generated from x0.

Brent (74], (76] considered the problem of finding a simple root 
~
‘ of a nonlinear

function F: P -, R, using the Brent-information (Meersman (76))

(2.6) ~~~~ :— {F(x0), F ’(x0), F’(y1), ... , F’(y5.1))

where x0 is an init ial approximation to 
~~ 

and y~ .. Y5-j are to be determined. Let

b a sufficientl y good approximation of the appropriate zero of the minimal-degree

A
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polynomial Interpolating the Information WB,s(F). Then Brent (74) showed how to

choose Yj  ‘ ... , Y5-i so that

(2.7) Ixj - 11 — 0(fr0 - ~
j
~~) as x0 ~

This d fines an iterative method of order 2s for finding 
~
.

* Let us now define a function F by setting

(2.8) F(z) :— 1~ d / v(s) - h
x0

and note that x(h) is the zero of F. Recalling that order for iterations is defined

differently than is order for one-step methods, (2.8) shows how an s-stage NRK

method of order p may be derived from a (p + 1)th_order iterative method for zero-

finding which uses the Brent-information (2.6). Using this transformation and (2.7)

Brent (74], (76] exhibited a sequence 
~MB~~ 

of “modified” Brent-Runge-Kutta methods

(“BRIC methods”), in which the s-stage method has order

(2.9) p — 2.-i

Furthermore, Meorsman (76] proved that this order is the greatest possible in the

class of all such BRK methods. We now extend Meersman’s result to include all NRK

methods.

Theorem ~J: No s-stage NRK method can have order greater tha n 2s - 1.

Proof: L.t ~ be an s-stag. method with order p. We will construct (from ç) an

Iterative method ~ of order q :— p + 1 for finding a simple zero r of an arbitrar y

analytic function F: P 4 P.

The method # is defined as follows. Let x~ be an approximation to 
~
‘ such that

F’ I. nonzero between x0 and ~
‘. (Since F’(t) p’ 0, such an x0 exists.) Write t0 :

without loss of generality, assume t0 a 0. Now apply one step of p, using a step-size

of -to, to the problem

~(t) — F’(xft)) t (t0 t a 0) wIth x(t0) —

• -~ -
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- 

- (whose solution is the functional inverse of F, so that x(O) — F 1(O) — ~k then # Is

given by

:— x0 - to ~(x01-t0) .

By the definition of order for iterative methods, It Is clear that ~ has order q~

moreover, 
~
‘ uses the g g ~ j~~~ Brent information (Definition 1L3.8 of M ersman (16D

:— (F(x0), F’(y0), F ’(yj ), ...
Suppose that Y~ “ x0; then q S 2s by Theorem 11.3.3 of Meersman (76]. On the other

hand, If Y~ 
— x0, then 4’ uses the Brent-information (2.6h by Theorem 11.2.4 of

Meersman [76] (also due to Wofniakowski), we have q s 2. In this case also. Thu. in

either case, we find that

p4 1  — q S 2s

and the desired result follows. I
Thus 

~~~~~ 
is informationallv-oDtimll in the class of NRK methods, in the sense

that each In $p~~~ uses the minimum number of stages possIble for a pth_Order

NRI( method.

— ~~~~~~~~~~~~~
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~ : 3. Complexity - Bounds for NRK Methods_ •1 I

In this Section, we will compute lower and upper bounds on the total number of

arithmetic operations C(p,a) required to guarantee that if Is a ptfP_order NRK

method, then 
-

(3.1) - IPG(Pp,h) S a :—

for a given p E ~~~ and a ( P ~~~~ (Here e is the base of the natural logarithms.) Since

a > 0, we have 0 < a c 1; clearly a increases as s decreases, and a tends to infinity as

a tends to zero.

In the methods we consider, we may write

• (3.2) C(p,a) — n c(p) — h ’ c(p)

where n is the minimal number of steps required (so that h a n~ is the maximal step-

size permitted), and the ç.Q~j oer ~~ c(p) is the number of arithmetic operatIons

required for the execution of one step of a pth_order NRK method. As in Traub and

Wo*niakowski (76], we shall express the cost per step In the form

(3.3) c(p) :— e(~~ (v)) + d(p)

Here ~Zp(v) is the information about v required to perform one step of a p~’-order

NRI( method p~, end we write C(92p(V)) for the informational c~ t of ~p; we call d(p)

the combinatory çQ~j of ~~~~~ 
For example, Euler’s method

x~,.1 — x~ + h v(x1)

has informational cost

(3.4) e(v) :— cost of evaluating v at one point.

The combinatory cost is two operations (i.e.~ one addition and one multiplication).

We now assume that the solution x of (1.1) i~ analytic on I. Thus Cauchy~s

Integral Theorem (Ahlfors (66], pg. 122) shows that there exists an M 0 such that

- -
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• 
Ix a

~ktH / iii s tw#~ for all t I

Finally, we shall restrict our attention to problems which are “sufficiently difficult,” I.e.,

— for which there exists an > 0 independent of h and p so that

(3.5) •( (P~.h) � (t4 h)P if hE I and p E Z~~
(See Section 4 of Werschulz (76b].)

We will now derive a lower bound for the complexity C(pa) via NRK methods.

-~ 

-

I 
Clearly, Theorem 2.1 implIes that for any ptl~_Order NRK method, we must have

- ~
- 

(3.6) e(~ p(v)) ~ e(v) (p + 1) / 2 ,

end a linear lower bound on the combinetory cost states that

(3.7) d(p) 
~ •L P

for some aL > 0. By (3.6) and (3.7), a lower bound on the cost per step for is

(3.8) CL(p) — (a~ + e(v)/2) p + e(v)/2 ,

• which leads to

Theor~rn ~j :

C(p,a) � C1(p,a) :— M,, (~ L + e(v)/2) p + e(v)/2] ca/p .

Proof: From (3.5), we see that if (3.1) holds, then

h � h~(p,a) :— M1,~’ ~~~~
- - Using this result, (3.2), and (3.8), the theorem follows. I

Next, we consider upper bounds on the number of operations required. Instead

of using 
~MBRK’ we will use the class •B~~ 

of “unmodified” BRK methods described in

the Appendix, where it is shown that •BRI( is order-convergent in the sense of

Werschulz (76b3. That is, there is an M~
> 0 such that

- 

-

, 

(3.9) vG(
~p,h) S (Mu h)~~

- 

no such bound is known for ~~~~~ In addition, 
~~~~ 

requires the solution of p - 1

- _______- — - ~~—~ _*_~~~~ _ — — - - - - ~~~ --- -~~
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linear systems of equations, the ~th having p - I unknowns, In order to perform a

“r.orthogonatlzation.” So th. smallest known com binatory cost for this class Is about

0(p381) arithm&ic operations; this is obtained by using Strass.n’s technique for linear

systems (described In Borodin and Munro (75]). On the other hand, most of the

combinatory cost for Pp in •B~~ 
is involved in finding the coefficients of the

polynomial 
~~+1 

(see the Appendlx~ once these coefficients are known, the remaining

comblnatory cost is 0(p In p) as p t ~~~. An estimate of how much work is rsqufred to

compute these coefficients is given in

Lemma ~j :  Let x0, Yi’ ... , Y,.~ w0, Z0, ... , Zr be given, and let

- I - Q(x) :— q~ x
I

be the unique polynomial of degree at most r + 1 satisfying

Q(x0) — w0, Q’(x0) — z0, and Q’(y1) a z1 (1 S I S r)

If 1(r) is the time required to compute q0, ... , q~~j , then

1(r) — O(r ln2r) as r t ~
Proof: The coefficients q1, 2q2, ... , (r+l)q~4~ of Q’ may be computed in time

O(r ln2r) by - using a fast algorithm for computing the coefficients of the lagrange

• polynomial interpolating the points (x0, 10), (y1,z1), (Y,’~
) see Borodin and

Munro (75] for details. Then 0(r) operations yield q1, ... 
~~~~ 

and Hornet’s rule gives

q0 with 0(r) additional operations. I
Thus there exists aU > 0 such that

(3.10) d(p) 
~ 

a
~ 

p ln2(p+e)

(We write “in (pie)”, where e is the base of the natural logarithms, rather than “In p”

as a technical convenience. However, an expression of the form “In (p+’y)” with ~p > 0

Is necessary to guarantee that d(1)’ 0.) In order to simplify matters a bit, note that

Theorem A.i of the Appendix Implies that

__
_ _ _
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(3.11) 
- 

•(~ p(V)) S e(v) p

-
~ Although the estimate above is not exact for p> 2, it is asymptotically equal to that In

Theorem A.1. (If necessary, the sharper estimate given there may be used, but the

calculation of optimal order (see below) involves considerably mote details moreover,

the asymptotic formulae for optimal complexity, order, and step-sIze are the same In
-

- 
- 

either case.) Combining (3.10) and (3.11), we see that the cost per st.p I. bounded by

(3.12) c~(p) — e(v) p + Cu ~ 
ln2(ps’e)

which leads to -

Theorem ~~:

C(p,a) S C1Jp,a) :— Mu (e(v) p + 5u p ln2(p+e)] ea/P

Proof: If we set

h — h1j(p,a) :— MU ’ s-a/p

we find that (3.9) implies that (3.1) holds. Using this result, (3.2), and (3.12), the

theorem follows. U
Thus we have found bounds

(3.13) C1(p,a) s C(p,a) s C~j(p,a)

on the number of operations required far a ptul_order NR$( method to provide an

approximate solution satisfying (3.1). We would like to compute

(3.14) C (a) :— lnf {C(p,a) : p E Z 4.4.)

This is not possible, since we only have bounds for C(p,a), and hence cannot compute

C(p a) exactly. However, we can pick optimal orders which minimize these bounds.

First, we prove

Lemma ~~~: Define

G1(p) : p2 cL’(p) / c1(p) and Gij(p) : p2 cU’(p) / c1jp) .

Then for p > 0, we have GL’(P) > 0 and G~’(p) ) 0.



~ -‘~ :- —- ‘
~~~

----‘-
~~
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Proof: Since c1 is a linear polynomial with a negative zero , the first part fo llows

immediately. Now write c1j(p) a c1(p) c2(p), where

c1(p) :-‘ p and c2(p) :— 1 + ~ ln
2(p + e),

with fl : •u / e(v) . Define

• G~(p) :— p2 ci’(p) / c~(p) (i — 1, 2)

Clearly G11(p) > 0 if p > 0. Now

G2(p) — 2 fi p2 In (p+e) / 02(p) , where D2(p) :— (p4s) f 2(p) ,

• so that

G21(p) — 2 ~ 
p g2(p) / 02(p)2

where

g2(p) :— $pln2(p+e) (In ( p+e ) - 1 ]+2Øe ln2(p+e) + (p+2e) ln (P4e)+P

Thus G21(p) > 0 for p > 0. Since G
~ 

— + G2 , the desired result follows. I
We now have the following

• Theorem ~~~: For any a > 0, there exist 
~~~~ 

and 
~~~~ 

such that

a — GL(p) if f p — p15(a) and a — G1j(p) if f p • Pu’5
~~ 

.

- . Moreover,

CL5(a) :— CL(p15(a),a) < C~(p,a) unless p —

and

C~
5(a) :— C~

(p
~

5(a),a) < C~j(p,a) unless P — pu5(a)

Proof: Using (3.5), (3.9), and Lemma 3.2, this follows immediately from Lemma 2.1

• 
1 of Werschutz (76a). I

From (3.13), (8.14), and the above Theorem, we have bounds

(3.15) C15(a) ~ C (a) ~~ Cu
5(a) .

We call 
~~~~ 

(respectively, pU5(a)) the lower (uooer) ootimst order, C~ (a)

(respectively, C~~
(a)) the tower (uooer) potimal comDlexitv~ and

_ _  _ _ _ _ _ _ _ _ _
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-

~~~~

(3.16) hL (a) :— hL(p1(s),a) (respectively, h1J(a) :—

• the lowe r (uDoer) optimal steo-size. We now examine how these quantities behave as

a Increases.
- Theorem ~~: P1(*), Pu~~ ’ CL5(a), and Cu5(a) alt increase monotonicatly and

tend to Infinity with a. Moreover, the following asymptotic formulae hold as a tends to

Infinity.

(1.) PL5(Ir) a and p~
5(s) “‘ a

(2.) CL~
(
~
) A’ ML a (CL + e(v)(2] a and C~

(a) ‘ki aU e a In2.

(3.) h~~(a) 1W (M, eY 1 and h~~
(a) (Mu c) ’

Proof: The first statement follows from Lemma 3.2 and from Theorem 2.3 of

Werschuiz (76b]. Now Lemma 3.2 implies that

G1(p) p and G1j(p) p as p t ~

Using this result and the fact that km at~ ~~~~ 
— km 

~~~ ~~~~ ~

(1.) follows. Finally, (2.) and (3.) follow from (1.), Theorem 3.1, and Th.orem 3.2. I

So in the class of nonlinear Punge-Kutta methods, we find that

(3.17) CL
5(

~
) — 0(s) s C5(a) S C~

5(d) — O(a In2.)

as a tends to Infinity; so, the ratio

Cu (s) / C~
5(a) — O(ln2a) as a 1 co

Indicates the gap in our knowledge of the complexity of nonlinear Runge-Kutta

methods.

Finally, we wish to compare the complexities of NRK methods, Taylor series

methods, and linear Runge-Kutta (“IRK”) methods. We write Cu~jm~’, CU,LRK , C~,i

for C~ 
in the class of NRK methods, LRK methods, and Taylor series methods; other

notations (C
~~RK, CLRK

5, etc.) are formed in an analogous manner. Finaly, if

f , g : P ’4 . P’4. satisfy u rn 
~~~ 

f(s) — lim 
~~~ 

g(.) a +~~~~, we write

- • • - - 
- - - - - - - -
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(3.18) f < g  U? f(a) — o(g(.)) ae. tco

• we say f is aSVmDtOticallv ~~j  ~~~ g. (See Section 5 of Werschulz (76a).) We then

have

-~~~~ ~~~~
- Theorem ~~: — -

~~ 
-

(1.) C~~g~~ < CL,L~~
’ . -

- j (2.) C~,i < CU,NRK if the cost of evaluating the 11th d.rlvatlv. of v is

bounded for all K.

Proof: Immediate from (3.20) and (4.14) of Wersch ulz (76a] and (3.17). I
As a corollary we see that CM~

5 < CLRK5I so that the best NRK method known

is better than the best IRK method possible. Moreover, if the derivatives of v are

easy to evaluate , the best Taylor series method known is better than the best NRK

method known. However, If the cost of evaluating the ktl~ derivative of v increases •
-- faster than 0(In K) as K t oo, then it is easy to show that the opposite will be true.

L

-~~ —--—-———-.--— --—.• ~~-—- •- - •.— --- I?__ -- -~~ -•— —— — - ~. — —~~~~ -——~-— _~~_a,



- -~ ••. •---— —~~~~~~~ --~~~~
-

~~~~~~ -~~~~~~ -—w-
-.- 
~~~~~~~~~~~ 

,.w•.-wI ~~~ 
- 

~~~~~~~~~~~~~~ -~ • ~‘r r!---~-Pn

1 14

-. Appendix: Order-Convergence of s Basic Sequence

:1
In this Appendix, we describe a subclass of a class of iterative methods for the

• solution of sca ler nonlinear equations. This subclass will then be used to generate an

order-conver gent basic sequence •B~~ 
of nonlinear Runge-Kutta methods.

Lemma ~,j: Ict F: OcP -, P have a simple zero g’, end suppose that F is

- ~- 
analytic at r. Pick K, m i’’ with m + 1 ~ K. Then there is a sequence

km — {*kmn : n E Z 
~~
‘ ) of stationary multlpoint methods without memory such that

the following hold:

(1.) The method #kmn uses the information

~)kmn~~ 
:— {F(x0). ... , F(m)(x0), f<k)(~ ~), ... ,

(the points y1 , ... , yn being suitably chosen) to compute a new

approximation x1 to ~ 
from a given approximation x0 by setting

- 

• x 1 :— *kmn(X&

(2.) There exists a B > 0 and an h0 > 0 such that if Ixo - r~ � h0, then

— � (B 1x0 — tP’ for all n z ~~‘
,

where

(A.1) p :— min (m + 2n+ 1,2m+n + 1)

Before proving the Lemma, we describe how the method *kmfl computes an

improved approximation x1 from the old approximation x0. 

-— ~~~~~~ —— — - -- 
- a — - —~~~~ - —-~~~~ a
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Alaorlthm ~~ comDutina x1 :— #kmn(XO).

(1.) Let I :—

(2.) Let z1 be an approximate zero of

p1(x) :— (x - x0)1 F0kx0) / it

satisf yi ng

(A.2) z1 — x0 + 0(1) and 1p1(z1)I S (A1 $)m+1 
,

where A 1 is independent of n.

(3.) L.t • -
•

yi :— + 

~in 
(z1 - x0) (1 s i S n), - -

where

5in a (j  + xin) / 2

and ~~ > ... > ~~ are the zeros of the Jacobi polynomial

Pn(X) :— p(k-l,m#l-k)(x)

(see Szeg5 (59]).

(4.) Let 
~~~ 

be the polynomial of degree at most m + n that Interpolates the

information tZkmnU~
), and let x~ be an approximate zero of Pn+1

satisfying

(A.3) x 1 — + 0(1) and Jp~+1(x1)I ~ (A~ 1)’ ,

where A2 is independent of n and p is given by (A.1).

Hers we use the notation of Brent (74]. Clearly, 4’kmn C’(K m, n) the only

difference beIng that conditions (A.2) and (A.3) replace (2.2) and (2.4) of Brent (74] It

is easy to see that (A.2) and (A.3) may be realized by using rlos2(m+l)1 - 1 and

Ilos2(,/(m+1))1 iteratIon s of Newton’s method, wIth the respective startIng

approximatio ns of x0 - F(x0) / F’(x0) and z1 .

fr -

F 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____  - - - ~~- -
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Proof ~ Lemma ~,j.: Let x1’ be th. exact zero of ~~~ near x0. We then find

that there is a ~ between x1’ and z1 such that

(A.4) ~F(x1’)~ S IPn+1(Z1) - F(z1)$ + I~~+i(
~

) - F’(~)$ $xj ’ - z~ •

Using (A.3), the analytic ity of F, and standard techniques of Interpolation theory

(Traub (64]), It Is easy to show that (2.9) and (2.10) of Brent (74] may be rewritt en as

- F(x)~ s (A3 $)m+n+1 and
(A.5)

- F’(x)~ s (A4 1)~~’~
- 1 for Ix - xoI ~ 41. (Here ill constants Ar will be independent of n.) Similarly, ws find

H that
- 

~
- !x1’ - 11 s (A5 $)m1t~ and j z1 - ~

j S (A6 $)m4.1

so that the tria ngle Inequality gives

(A.6) ,x1l~~z1I S

Using (A.4), (A S), and (A S), we see that

If(x 1’)I S ~~~~~~ 
- F(z 1)I + (A8 1)2m+fl+1

s (p~4~(Z~) - F1(z1)I + IF2(z1H + (A8 $)2msn+1

where

F1(x) :— z~~
2” ( - x0)’ J~~x0 / ii and F2(x) :— F(x) — F1(x)

Clearly 1F2(x)I S (A9 $)m+2n+1 
, so that (A.7) becomes

(A.8) IF(x11fl ~~ IP~+,(Z1) - F1(z1fl + (A 10 1)

As In Brent (743, we now write

p~4~(x ) — r1(x) + r2(x) ,

where r1 (I — 1, 2) 1. the polynomial of degree at most m + n sat isfying

and 

r1~i~(x0) a F1~1~(x0) (OS j � m)

r1~’~y1 a F1
(k)(y1) (1 S I S n) .

-~~-~—— -~_4__•~_ _ -
-—--— - - - ~~~~ • -• -•- •~~~~ — • --••-~~ - - • -- • — - - - -
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If we let

: 1 P(x) : r1(x + x0) — F 1(x +

- and write a :— z1 - x0 (in this Appendix only), we find that

j P~’~(O )— 0 ( O SiSm )  and P0’ki~~~.)aO  (l s is n)
— 

We may easily alter the proof of Lemma 4.3 In Brent (74) to show that

r1(z1) - F 1(z1) — P(.) a 0
- Thus (A.8) becomes

- (A.9) IF(x191 ~ 1r2(z1)I + (A 10 1)~.

- To bound the remaining term, let us write

I . V 2(X) — ~~~ (x - X0)i+m

recalling that r2 has a zero of multiplicity m at x 0 . Using the notation of Stewart (73],

we see that the nonzero coefficients of r2 are given by the solution of the linear

system

H W y — c ,

where

:— a~~ (1 S i, ~ ~~ 
,
~
)

:— Cj+rn 1 .’rn (j + m)! / (j + m - K)! (1 � j s n), and

- :— ~ F2
(k~yj ) / ~n 4i+1 (1 S I S n)

- 
Since WT is a Vandermonde matrix , we find that the entries of U a W ’ are given by

-~ 
51j — a~~( 1)’~ ‘n-l,n-l ,j / 11r,’J ~jn - u rn),

where

:— I 
~~~~ p5,n ‘

1 the sum being taken over ill multi-indices 
~i ... p~, not including I (Gregory and

Karney (69]). Since there are fewer than 2’~ summands, each of which lies In (0, 1],

I WC UI that ‘~i,n-1,j s , Implying that

- ~~~~ -— ~~~~~~~~~~~~ — ~~~~~~~~ 
~~~~ ‘~~~~~~~~~~~~ à&à a - - -
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Ivj~I ~ 2” ‘jn / tlr#j (aj~ 
-

So we have

liii 
~~~~~ ‘ij~jI

(A.1O)
S n 2” max 1Sj~~ 

I 5k F2
(k)(y1) / (5flt~.’K G,~’(.j )J I.

where

G,~(x) :— G,1(m + 1, m + 2 - K, x) — 
~~—i ~ -

(se. Abramowltz and Stegun (64)).

Now it Is clear that

max 1 / 5~~k 
- 1

By Theorem 89.1 of Sz.gb (59], we may show that

~

- :- using thIs result and (22.5.2) of Abra mow itz and Stegun (64], we find that

max 1sj~~ 
(5~~k G~’(.1~)r’

(All)

—1 ~ A1~ ~
2(m~~ (m 

+ + ) max lsjs n lPn’(xjn)I ’i

By the symmetry relation (4.1.3) of Szeg5 (59], we may assume that 0 � Xjn < 1. Using

Theorem &9.1 of Szegb (59], we may show that

IPn’(Xjn)F1 S (A 13)’~i

and so (A.1O), (Al 1), the definition of F2, and the above imply that

s (A14 $)~I~2fl4 1

yielding the result

1r2(zi )l ~ Z
~_,i al+m ,

j1 m s n max ~ (A 15 $)m+2n+1

So (A S) becomes

s (A 161) .

By Taylor ’s Theorem , this implies

- ~~~~~~~ - -- ~~~ -- —. - — - - -
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• Ix11-~I S (*171)’

The desired r sult then follows from (*3) and from (2.5) of Brent (743. I
We now describe the basic sequence ~~~~ The methods i~ th is basic sequence

are given by

h) :—

, h ) —  v(x0 + h v(x0) / 2),

and for p

h) :— h 1 (*1,1,1,...2(x0) - x03,

with *1,1,p..2 applied to the function F given by (2.8) and the approximation x1 to

being given by an appropriate number of iterations of Newton’s method (as described

above). -

Theorem ~,j: The basic sequence ~~~ is order-convergent with respect to the

global error. Moreover, the number of stages s(p) required by ~~ ~ 0BRK is given by • 
-•

( P  l f p S 2
s(p) — .(

( p - i  i f p > 2

Proof: We use the notation of Lemma *1, writing z(h) for the computed pt11
~

H order approximation x1 to x(h) and P~+1~ 
, x0) for the polynomial Pn+1 . The result

of Lemma A.1 is that

h 1 
~z(h) - x(h)I S (B h)P ,

the desired result for a single unit step. To prove the global result, we must consider

the Llpachltz constants for •B~~.

We implicitly differentiate the result Pn+i~”1” 
x0) • 0 to find

~l Pp~”O , h) -pr1 Qn+i~’i” *0
) + sp(XO).

- 
~~~~~~~~ 

where

Q~~1(x11,x0) — 1 +~ 2 pn+1(X1’,XO) / ô 1 Pn+1(I~1’
,*o)

____ 
_ _ _ _ _ _ _  

-
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and

a h 1 (d/dx0) (*1 — *1’)

It Is easy to see that x1 and Xj ” are analytic functions of *0 . Since their difference

tends to zero uniformly on the domain of v as p 1 ~ , it follows that

urn ptco s~(xo) — 0

We claim that

-~ ~
- Q~41(x 11, *0) — 0th In n) as n t ~

uniformly in x0. To see this, note that we may write the interpolation polynomial 
~~~

in terms of Jacobi polynomial P,, , finding that -

p

~

.,1(x,x0) a (-1)” (h/2) ~~~~ P~(t) dt + h v(x0) Z
~al II~

where

- 
r(x) :— 2 (x - *0) / (h v(x0)3 - 1

:— (2 (1 + Xkn) v(yk) Pn’(X kn)] 1 
~~~ 

(t + 1) P~(t) / (t - Xkn) dt .

ô1 P~+i
(
~i~ *0

) a (-1)” P
~(r1

) / v(x0) + (1 + ~1) I ~~ 
g(xkfl ) 1kn~ 1~ ’

—1 where

1kn~~ 
Pn(

~
c) / (P~’(XKfl) (x - Xkfl)], and

g(t) :— 1 / [(1 +t) v(x0 +(1 +t )hv(x0)/2)) .

By (8.21.10) of Szeg5 (59), the first term in the expression for 
~ pn+1(xl’ , *0) goes

to zero as n t ~~~~ . A minor modification of the proof of Theorem 14.4 of Szeg6 (59] —

shows that the sum in the remaining term tends to g(~(x(h))) as n t Co . So

~i Pn+1(*1’ *0) v(x(hD1 as n t w

_ _ _ _  

__ _
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Using Lemma A.l of the Appendix I~ Werschulz (76a] and techniques similar to thee.

yielding the abov, estimate, we find

ô2 Pn+1~~i’ ~~ 
— 0(h In n) - v(x(h))~ as n t Co

This gives the estimate clalm d for Q~41(x1’ , *~). - 
-

So the Upschitz constant for ~ BRK grows as the logarithm of p. By

Proposition 4.3 of Wersc hulz (76b], ~~~ Is order-convergent. I

-

~~~ I

- 
- _~_ _~ — -— 
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